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Abstract 

We investigate the use of linguistic rules based on 'rules-of-thumb' experiences and engineering judgments to guide an industrial robot to 
follow a moving target using visual information. The problem has been formulated in the context of Prey Capture with the robot as a 'pursuer' 
and a moving object as a passive 'prey', Such a formulation mimics the function and capability of a natural being to pursue its prey. The 
feasibility of the fuzzy logic control strategy was verified experimentally. The experiments, built upon the framework of a low-cost flexible 
integrated vision system developed at Georgia Institute of Technology, were performed on a vibratory feeder with robotic hand-eye 
coordination. Experiments demonstrated that this approach does not require an accurate description of the dynamics of the pursuit process 
or that of the target's motion, nor does it require the goals and constraints of the system to be quantified as single numerical values. These 
attractive features of the control strategy mean it has significant potential in industrial applications where models of the controlled process are 
not available, but the operator's experience may be used as a guide to formulate the control rules. © 1998 Elsevier Science B.V. 
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1. Introduction 

This paper addresses the problem of guiding an industrial 
robot to follow a moving target with machine vision in an 
unattended and less structured environment. Such an appli- 
cation shares many of  the characteristics of  a common 
phenomenon; namely, the pursuit of  prey. Other potential 
applications include automatic ship berthing, picking up 
moving objects, interception of  flying attackers, and trans- 
ferring live broilers in poultry processing. 

In the application of  machine vision for tracking, a cam- 
era is primarily used to detect the relative motion between a 
target and the tracker in which the camera resides. Two 
common approaches in tracking are the optical flow method 
[1] and the feature-matching method [2]. The optical flow 
method determines a field of  instantaneous velocities from 
the gray level images of a target. It has been used in Refs. 
[3-5]  among others in studies of visual feedback for robot 
controls, The feature-matching method involves registering 
certain features of  moving targets from its consecutive 
images and uses the relationships between features to com- 
pute the parameters describing the motion. This method was 
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adopted in Refs. [6-9].  Many of  these research efforts have 
treated the problem in the context of  classical feedback 
servo, with visual feedback to close the loop of  a robot 
control itself; where the dynamics of  both a robot and a 
target are modeled analytically. Hence, much attention has 
been paid to system modeling and the accommodation of  
vision feedback in the robot control design in order to 
enhance the dynamics of  the overall system. 

For industrial applications such as picking up moving 
targets from a vibratory feeder, past research solutions are 
rather limited. The challenges are as follows. 

1. The dynamics of  the moving targets are highly nonlinear 
and are often impractical to model analytically. 

2. The goals and constraints of the problem are not always 
quantifiable by single numerical values. 

3. It is often impractical for users to customize off-the-shelf 
robots, feeders, and vision systems (which typically have 
their own stand-alone controllers) for their specific appli- 
cations, especially when no model of the controlled 
process is available. 

However, an experienced person is often able to estimate 
a target's motion, and can take appropriate action to grasp it 
based on his/her knowledge gained over long-term observation 
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Fig. 1. Dynamic pursuit of a sea lion by a white shark. 

for particular circumstances. For example, a human being 
can usually catch a fly successfully with a fly swatter. This 
inspires us to apply the fuzzy logic theory introduced by 
[10] to tackle such problems. 

We investigate the use of linguistic rules based on 'rules- 
of-thumb' experiences and engineering judgments to 
formulate control rules, and apply experimental or heuristic 
knowledge as a basis for logical inference. Such a formula- 
tion mimics the function and capability of a natural being to 
pursue its prey as illustrated in Fig. 1 [11], where a white 
shark dynamically tracks and captures its prey, typically a 
seal or a sea lion. Strong findings suggest that white sharks 
select their prey on the basis of shape with vision since the 
prey, illuminated from above by the sun, would appear as a 
black silhouette to the shark looking upward from below. 
Like many popular ideas, the predatory behavior of the 
stealthy white shark, which offers some interesting scientific 
implications, is employed in the design of an intelligent 
vision-guided control system for dynamic pursuit of moving 
target. 

The remainder of this article is organized as follows: 
Section 2 presents the design concept of the vision-guided 
dynamic pursuit system, followed by the discussion of the 
fuzzy logic control rules in Section 3. The experimental 
prototype is briefly outlined in Section 4 and results are 
given in Section 5. Finally, the conclusions are summarized 
in Section 6. 

2. Design concept 

The system for target pursuit consists of at least three 
components or subsystems; namely, a robotic system, a 

vision system, and a target. The problem is formulated 
here in the context of prey capture, where the robot behaves 
as a 'pursuer' and a moving target as a 'prey' or 'evader'. 
Mathematically, the problem can be expressed as follows: 

llxt-Xrbl ~ IIx1"I, (1) 

where xt and xr are the state vectors of the moving target and 
the robot, respectively; x~ is the desired final state difference 
between the robot and the moving target; and the notation 
II * II denotes the norm of vectors: 
][xll = (x 2 "-[-x 2 -~-" '-~ X2n, )1/2 In Eq. (1), the state vector is 
defined as x(.)= [p(,), v(.), 0(.i] T where p~.), v(.), 0~.) are the 
position, velocity and orientation vectors of (,), respectively, 
where x C R n, and x = (Xl,X2 ..... xn) T. 

Eq. (1) represents the control objective of the pursuit 
process subjected to the following constraints imposed by 
the robot, the object, and the environment. 

1. The speed and acceleration of the robot are limited: 

Ilvrll <- Vrrnax, (2a) 

I larll -< armax, (2b) 

where Vrmax and armax denote the maximum speed and accel- 
eration of the robot respectively. 
2. The robot can only move without hitting any obstacle 

within a certain workspace, whereas moving targets will 
not venture into certain areas. In other words, 

Pr C-p~0 (3a) 

Po C Po0 (3b) 

where pro denotes the range of Pr, and Po0 the range of po. 

The objective of the fuzzy logic controller (FLC), as 
shown in Fig. 2, is to find an appropriate command to direct 
the robot gripper to the vicinity of the moving target based 
on the visual information from the vision system. Here, the 
'pursuer' (robot) determines its action based on how far a 
'prey' (moving target) is away from it, how fast the 'prey' is 
fleeing, and in which direction the 'prey' is going to flee. 

As shown in Fig. 2, the displacement and velocity 
differences are chosen as the primary motion parameters 
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Fig. 2. System schematic of dynamic pursuit. 
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to describe the relationship between the robot and the target. 
Thus, these variables are defined as inputs to the controller 
as follows: 

6x = xt - x~, (4a) 

6v = vt - vr, (4b) 

where xt and Xr are the positions of the target and the robot 
gripper, respectively, and vt and vr are the velocities of the 
target and the robot gripper. Likewise, the change to the 
velocity is chosen as the output variable in order to 
accelerate or decelerate the motion of the 'pursuer'. That 
is, the robot velocity command is computed by 

v~(t + 1) = vr(t) + ~vr, (5) 

where t denotes the current time interval, t -4- 1 the next 
interval, and 6v~ is the output of the fuzzy logic control--  
the speed change to the robot gripper. Both input and output 
variables are characterized by a fuzzy set of seven linguistic 
values. These values are 

NL: negatively large PS: positively small 
NM: negatively medium PM: positively medium 
NS: negatively small PL: positively large 
ZE: zero 

where N denotes negative, P positive, S small, M medium, 
and L large. The controller output is determined using the 
linguistic rules in the following form: 

IF P is A i and V is Bi, THEN/~ is Ci (6) 

where/5 and f" are the input fuzzy variables (position and 
speed differences);/~ is the output fuzzy variable (change to 
robot speed); Ai, Bi, and Ci are the linguistic values corre- 
sponding to the ith rule for the fuzzy variables/5, f, and R, 
respectively. For a two-input system with seven fuzzy 
values for each input, a fully populated rule base will 
have 7 × 7 = 49 possible input combinations of rules. 

Since no model of the controlled process is available, the 
operator's experience is used as a guide to formulate the 
control rules. To illustrate the rule-base pursuit operation, 
the phase plane of/5 and ~? is divided into regions as shown 
in Fig. 3(a) where the unshaded region is a mirror image of 
the shaded cells. The corresponding rules are given in Fig. 
3(b). The control action is determined from a specified pair 
of input fuzzy variables, and the desired final state is at the 
center of the rule base table, denoted cell A in Fig. 3(a). 
Typical control action is illustrated as follows. If there is a 
large positive difference in position (PL), as indicated in 
shaded region B in Fig. 3(a), the robot should be com- 
manded to accelerate to reduce the difference. Thus, the 
Robot_Velocity_Change is assigned to be Positively 
Large (PL). As the corresponding speed difference between 
the target and the robot becomes increasingly negative and 
finally reaches NL, the control action will gradually be 
lowered to ZE, as shown on the upper right cell of the 
rule base matrix in Fig. 3(b). As the position difference 
reduces, the control action reverts to NL, lowering the 
robot speed as the system enters region C. However, a 
reduction in robot speed will tend to increase the speed 
difference. The system then moves through region C 
designed to drive the speed difference from NL to ZE and 
finally to region D. The rules for the three cells in region D 
are  

IF/5 is NS AND ~" is ZE, THEN/~ is NM 

IF P is NS AND ~" is PS, THEN R is ZE 

IF/3 is ZE AND ~' is PS, THEN/~ is PS. 

Finally, the system is dampened in toward cell A, which is 
the desired system final state. Note that the unshaded cells in 
Fig. 3(a) is the mirror image of the shaded cells that 
correspond to a negative large position difference. The 
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Fuzzifier Engine Defuzzifier 

Fig. 4. Schematic of a fuzzy logic controller. 

control actions of the unshaped region thus have identical 
amplitude but opposite polarity actions to that of the shaded 
region. 

3. Fuzzy  logic control  (FLC) a lgor i thm 

The schematic of the fuzzy logic controller is shown in 
Fig. 4. It consists of a fuzzifier, an inference engine made up 
of a data base and a rule base, and a defuzzifier. The fuzzi- 
tier transforms the inputs in real crisp numbers into fuzzy 
values or fuzzy sets. The inference engine performs the 
fuzzy reasoning upon the linguistic or other control rules 
stored in the rule base. The data base provides the inference 
engine with the membership functions of the fuzzy sets 
which describe the input and output variables and are used 
in the rule base. The defuzzifier transforms the outputs of 
the fuzzy inference engine, a fuzzy set itself, into the outputs 
in real crisp number to provide single-valued control signals 
for the plant. 

As discussed in the previous section, the measured posi- 
tion and the velocity differences are chosen as input 
variables. The change to the robot speed is chosen as the 
controller output. In the fuzzification process, the inputs and 
outputs are usually normalized to a certain range. In general, 
for a variable defined in range [a, b], it can be normalized to 
range [ - c, c] as follows: 

2c [Y - (a + b)/2] 
X L 

(7) 

where c can be any integer whose value is dependent on 
specific applications. 

~(x) 

i i i f 

-c -~t -[3 -et 0 a 13 ~, c 

Fig. 5. Definition of the membership functions. 

3.1. Fuzzification 

Each of the input and output physical variables are 
characterized by a fuzzy set of linguistic values, namely, 
NL, NM, NS, ZE, PS, PM, and PL. Each linguistic value 
is defined by its membership function, as shown in Fig. 5. 
Membership functions are defined to have an overlap with 
each other in order to provide a smooth output transition 
between regions. The degree of overlap is characterized by 
the truth value of the intersecting point between the two 
adjacent membership functions and can be tuned. The sys- 
tem tends to be more robust as the overlap increases but the 
control is more sensitive as the overlap decreases. The out- 
put from the controller can then be obtained from the inputs 
by using the compositional rule of inference. 

As stated in Section 2, the controller attempts to find an 
appropriate action to reduce the position and speed differ- 
ence between the gripper and the target to a desired level. 
Thus, when the position difference is very large, it causes 
the pursuer to accelerate with a speed higher than its prey, so 
it can catch up with its prey quickly. This initial pursuit 
operation can be regarded as a coarse motion control. How- 
ever, once the pursuer gets closer to the prey, emphasis is 
shifted to a finer motion control. The fine control action 
reduces the speed difference between pursuer and prey to 
within a specified range of reach. To achieve this effect, the 
FLC is designed with a self-tuning capability that auto- 
matically shifts from a coarser to a finer motion. Narrower 
membership functions are chosen for the fuzzy variables 
close to zero where fine motion control is desired, whereas 
broader spanned membership functions are used for fuzzy 
variables far from zero where coarser motion control will be 
accepted. In other words, the parameters of the universe are 
set as 

(e - B) -> ('¢ - c~) - / 3  (8) 

where (c - B), (~ - oe), and ~3 are the base lengths of the 
polygons characterized the membership functions defined in 
Fig. 5. 

3.2. Inference engine 

Since the membership functions of the fuzzy variables 
overlap, the inference engine must determine a control 
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output r, the actual crisp change to the robot speed, from any 
two control rules for the fuzzy variable/~ given the position 
difference p for the fuzzy variable/5 and the speed differ- 
ence v. The decision process of the inference engine is as 
follows. Recall that the rules are in the form represented by 
Eq. (6). Consider two rules as follows: 

Rule 1 : I F P i s A I  and f ' i s B l ,  T H E N k i s C 1  

Rule 2 : IF/5 is A 2 and 17' is B2, THEN k is C2. 

For Rule 1, the truth value ofpo is/XA, (Po), the truth value of 
Vo, /ZB, (vo), where /~A, (P) and #B~ (V) are the membership 
functions for A ~ and B ,, respectively. Then the strength of 
Rule 1 can be calculated by 

/A 1 =/AA, (/90) A P'B, (Vo)' (9) 

The control output of Rule 1 is calculated by applying the 
matching strength of its conditions on its conclusion: 

UC 1 '(r) = #, Att G (r) (10) 

where z ranges over the values the rule conclusion can take. 
Similarly, for Rule 2, the truth value ofpo is #a2(Po), the 

truth value of Vo is i~B2(Vo), where ttA2(P) and #B2(P) are the 
membership functions for A2 and B2, respectively. The 
corresponding strength of Rule 2 will be 

11,2 =l.ta2(Po) A ].tB2(Vo) (11) 

and the control output of Rule 2 is 

tZc2'(r) = #2 ^ tZc2(r) • (12) 

Thus, as a result of reading the feedback Po and Vo from the 
vision system, two independent control actions are recom- 
mended. Rule 1 is recommending a control action with 
membership function iZc, '(r) and Rule 2/Zc2 '(r). The infer- 
ence engine or the inference process then produces 

i~c(r) =/.tc, '(r) V #c2 '(r) = [/3.1 A ~c I (r)] V [/~2 A/~cz(r)], 

(13) 

where #c(r )  is a piece-wise membership function for the 
combined conclusion of Rule 1 and Rule 2. From this mem- 
bership function, a deterministic control action r0 to apply to 
the plant is found by the following defuzzification process. 

3.3. Defuzzification 

The defuzzification process consists of two steps. The 
first step deduces a single-value control action from all 
the fuzzy actions. Each rule action specifies an output 
fuzzy value such as 'Robot_Speed_Change k is 
Positive_Medium (PM)', and a strength which indicates 
the truth value, for example, say/z(PM) = 0.25. Here the 
membership function representing each fuzzy value is 
topped at the value of the truth value, /z, with which the 
rule fired. With all the control action combined, the resulting 
piece-wise membership function is produced as shown in 
Fig. 6 with the darkened line. The crisp value is determined 
in defuzzification as follows: 

I rtzc(r dr 
r 0 - ' , (14) 

f/xc(r ) dr 

where #c(r)  is the piece-wise membership function of the 
combined control action at the time instant being consid- 
ered; and r0 is the defuzzified normalized crisp value of the 
control output. Integration is done over the entire universe 
of discourse. The second step transforms the resulting single 
fuzzy action into a crisp, executable system output. The 
actual control, the robot speed change, is given by 

6 v r = k  u × r o (15) 

where 6Vr is the actual robot speed change in real crisp 
numbers, and ku is a scaling gain. 

4. Vision-guided controller system architecture 

The vision-guided controller was built upon a flexible 
integrated vision system (FIVS) [12] developed at Georgia 
Institute of Technology. As shown in Fig. 7, the vision 
system has five basic functional modules. 

1. An on-board computer consists of a microprocessor and 
its associated EEPROM, scratch RAM, and communica- 
tion hardware. 

2. A video head includes the imaging sensor--a charge 
coupled device (CCD), a high-bandwidth signal-condi- 
tioning amplifier, an analog-to-digital converter (ADC), 
and video RAM. 

3. An optic system houses the lens (or simply a pinhole) 
and associated illumination. 

4. An off-line host-interface allows the user to carry out off- 
line calibration, perform image analysis, and implement 
application-specific software through a host computer. 

5. A real-time video record/playback allows failure-modes 
to be analyzed off-line.The DSP-based control board is 
designed to communicate with several option boards in 
parallel to tailor the system for a number of applications. 
Each of these option boards is controlled independently 
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Fig. 7. The FIVS vision system: (a) the FIVS prototype; (b) schematics. 

by a programmable logic device (PLD) which receives a 
peripheral select signal, a read/write signal, and an 
address signal from the microprocessor control board. 
Typical examples of the option boards for the FIVS are 
the digital video head, a real-time video record/display/ 
playback board, and an expandable memory board. 

The video head consists of a m x n CCD array, the output 
of which is conditioned by a high bandwidth amplification 
circuitry and sampled by a 'flash' ADC. The DSP-based 
control board provides direct software control of CCD 
array scanning and integration time, the intensity of the 
collocated illumination, and the real-time execution of a 
user-selectable vision algorithm imbedded in the EEPROM. 
In operation, the PLD decodes the control signals to initiate 
row shifts and column shifts in response to commands from 
the DSP-based control board. Particular row shifts and 

Fig. 8. Dyna-Slide vibratory feeder. 

column shifts enable the retrieval of a relevant area from 
an image. The PLD also provides control signals to ADC for 
performing the analog-to-digital conversion synchronized 
with row shifts, and enables the video buffer when the 
DSP reads or writes data to the VRAM. 

Unlike conventional RS170-based systems or the early 
version of the LTS/IVS [13] which require pixel data to 
be stored in a video buffer before the processing of pixel 
data can commence, the FIVS design provides an option to 
completely by-pass the video buffer. Thus, the FIVS offers a 
means to process and/or to store the digitized pixel data by 
directly transferring the ADC output to the DSP. For real- 
time vision-based object tracking and motion control system 
applications, the scheme represents a significant saving in 
time and video buffer size required for processing an image. 
As an illustration, consider an image array of m X n pixels. 
The time needed to store the entire image (with no compu- 
tation) in a memory at K MHz is (m X n)/K/~s and requires 
(m × n)bytes of memory. Typical array size of a CCD 
ranges from 200 x 160 to 4096 x 4096 pixels. The corre- 
sponding video buffer and time required simply to store the 
entire image at a clock rate of 10 MHz would range from 
32kbytes to 16Mbytes and 3.2-1600ms,  respectively! 
Clearly, the option to completely by-pass the video buffer 
offers a potentially useful solution to eliminate the frame 
storage prerequisite often required in conventional vision 
systems. Furthermore, this scheme completely eliminates 
the special hardware needed in acquiring the digitized 
pixel data for storage. 

The main kernel of FIVS provides a user interface 
whereby the user can reprogram the EEPROM of the 
processor board. This allows the user to customize the 
image processing for a particular task, from a library of 
algorithms. Based on the hardware design, the software is 
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Fig. 9. The trajectories of a moving target in x and y directions: (a) displacement; (b) speed variation. 

able to control the CCD array scanning and integration time, 
and the intensity of the collocated illumination. With the 
CCD under software control, partial frames can be 'cap- 
tured' and processed instead of the customary full frame, 
reducing the cycle time required to capture and process an 
image. The ability to shift out partial frames is ideal for high 
speed tracking applications where the approximate location 
is known from a prior image. 

5. Case study experimental results 

Vibratory feeders are commonly used to separate, feed, or 
kit parts by industrial robots. As shown in Fig. 8, the feeder 
has resilient brushed surface to cushion and direct parts to 
move forward. Often, a dedicated fixture must be designed 
to adapt to a specific part shape to locate parts at the end of 
the feeder for pick-up by a pre-programmed industrial robot. 
More recently, vision systems are used to locate isolated 
objects on the vibratory surface for pick-up by robots. In 
most cases, the feeder must stop to allow the robot to pick up 
the objects. A vision-guided FLC system provides an effec- 
tive alternative to pick up moving objects from vibratory 
surface. The vision-guided FLC, while eliminating the need 
of a dedicated fixture for each part family, does not require 
to stop the feeder for picking up the parts. The following 
case study illustrates the feasibility of applying the vision- 
guided controller to direct the robot (gripper) to the vicinity 
of the target for pick up. 

The experimental setup consists of a vision system FIVS, 
an industrial robot, a vibratory feeder, and a host computer. 
The vision system was mounted on a six degree-of-freedom 
Cincinnati Milacron T 3 786 industrial robot. An Intel 486 
PC serves as a host to coordinate the operation between the 
vision system and the robot via a RS232 serial communica- 
tion. A Dina-Slide Vibratory feeder was used to circulate 

parts on a vibratory surface continuously. The maximum 
speed of parts on the feeder is approximately 300 mm s- ~. 

A typical cycle of the dynamic pursuit operation is as 
follows. The vision system is positioned at a pre-specified 
location (0, 0, 1 m) above the vibratory feeder such that the 
optical axis of the camera is perpendicular to the vibratory 
surface. The vision system repeatably scans for a moving 
object to appear in its field of view (FOV), approximately _+ 
100 mm in both x and y directions. Once it detects a moving 
target which is any object with an area within a specified 
range (Ami n < A < A max), the vision system computes the 
initial position and velocity of the moving object from two 
or more consecutive images. The target speed in x and y 
directions was smoothed out before being compared with 
the speed of the robot and sent to the FLC with the differ- 
ence. That is: 

1 
vt'(i ) = 2-[vt(i) q- vt(i  - 1)] 

z 
(16) 

where vt is the target speed in either thex or the y direction; i 
represents the current sampling time instant, and i - 1 the 
preceding sampling time instant. The computed data are 
then sent to the host computer that commands the robot to 
'pursue' the object of interest via a DDCMP communication 
protocol. Unlike off-the-shelf video-based camera, FIVS 
performs on the board image processing and outputs the 
computed position of the target to the host computer. Typi- 
cal motion of the moving target, recorded by the FIVS, is 
shown in Fig. 9. 

Fig. 10(a) to Fig. 10(d) display experimental results of 
different gain settings, where the cycle-time between adja- 
cent data points is 0.3 s. The average velocity in each time 
step can be inferred from the spacing between adjacent data 
points in the plot. The scaling gain settings used in the 
experiments are summarized in Table 1. In these tests, the 
parameters of the membership functions, c~,/3, and % were 
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Fig. 10. Robot and target trajectory: (a) gain setting 1; (b) gain Setting 2; (c) gain setting 3; (d) gain setting 4. 

chosen to be 2, 4 and 8, respectively. The maximum speeds 
of the robot, in x and y directions, were set to 200 mm s -~. 

As shown in Fig. 10(a) to Fig. 10(c), the robot has 
successfully approached its specified vicinity defined as 

Table 1 
Gain settings used in experiments 

gp Ko Ku 

X Y x y X Y 

Gain setting 1, 20 20 80 40 24 12 
Fig. 10(a) 
Gain setting 2, 20 20 40 20 24 12 
Fig. 10(b) 
Gain seuing 3, 20 20 40 20 40 20 
Fig. 10(c) 
Gain setting 4, 40 40 40 20 24 12 
Fig. 10(d) 

Kp, KD and Ku represent scaling gains; X, x, Y and y refer to the direction of 
motion. 

+_ 5mm in both x and y directions. In most cases, the 
robot managed to reach the specified vicinity of the target 
in less than 2 s. As shown in Fig. 10(a), the robot was 
initially at rest when the target appeared in its FOV. The 
FIVS determined the initial position and velocity of the 
target based on a sequence of two images. The FLC pre- 
dicted the next target position based the information fed 
back from FIVS and commanded the robot to accelerate 
from rest to the specified maximum speed. The initial coarse 
motion control resulted in a rapid reduction of position and 
velocity differences as desired. However, the high velocity 
scaling gain KD results in a significant momentum and thus a 
significant overshoot in position and exhibits a relatively 
large velocity difference at the end of its 1.8 s pursuit 
operation. The effect appears to be similar to the classical 
proportional control of a velocity servo. Hence, the velocity 
scaling gain KD was scaled to half of the original value 
while other gains remained unchanged (see Gain Setting 2 
in Table 1) and the corresponding performance is illustrated 
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in Fig. 10(b). The reduction in KD essentially el iminated the 
overshoot during the initial coarse motion control, and the 
robot was able to complete its pursuing task in 1.5 s with a 
velocity difference of  --_ 5 mm s -1. The scaling gain Ku 
provides an incremental speed change to the robot, Fig. 
10(c) shows the trajectory where the gain Ku was increased 
by a factor of  1.67, the system exhibits similar position and 
velocity overshoot as the FLC with a high velocity scaling 
gains. This result has demonstrated a similar effect of a 
classical proportional controller of  a velocity servo. Fig. 
10(d) shows an attempt to double the position scaling gain 
Kp from that of  gain setting 2. It was found that Kp plays a 
role similar to the integral gain in a typical velocity servo. It 
was observed that near-zero velocity difference was 
achieved in about 1.5 s in both x and y directions. However,  
since end-point position control of  the robot gripper, was not 
a control objective, a significant offset in position was found 
throughout the chase. 

In the course of  design and simulation, membership func- 
tions, control rules, defuzzification methods, etc. were 
defined or determined based on the understanding of  the 
controlled system or process. It is expected that adjusting 
the range and shape of  each membership function can 
further fine-tune the system. Furthermore, it is also expected 
that a derivative term can be added to provide an additional 
freedom in tuning the control performance. 

6. Conclusions 

A vision-guided fuzzy logic controller for robotic 
dynamic pursuit of  a moving object in Cartesian space has 
been developed. Built upon a non-conventional vision 
system developed at Georgia Institute of Technology, 
experiments on parts moving on an industrial vibratory fee- 
der have shown that the vision-based fuzzy logic controller 
can effectively guide an industrial robot to follow highly 
nonlinear motion of  a moving target and approach its 
vicinity. A case study based on an industrial part kitting 
system has demonstrated a potentially useful solution to 
kitting moving parts on vibratory feeder without relying 
on object-dependent fixtures. Since the control effort 
requires only the change in robot end-point velocity in Car- 
tesian space, the technique can be readily applied to off-the- 
shelf industrial robots without having to change the system 
hardware. As demonstrated experimentally,  the control 

parameters of  the vision-guided FLC system can be 
adjusted following similar guidelines for classical PID 
controller. 
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